
J Stat Phys (2008) 132: 839–861
DOI 10.1007/s10955-008-9583-2

Bootstrap Percolation on Homogeneous Trees Has
2 Phase Transitions

L.R.G. Fontes · R.H. Schonmann

Received: 19 May 2008 / Accepted: 10 June 2008 / Published online: 28 June 2008
© Springer Science+Business Media, LLC 2008

Abstract We study the threshold θ bootstrap percolation model on the homogeneous tree
with degree b + 1, 2 ≤ θ ≤ b, and initial density p. It is known that there exists a nontriv-
ial critical value for p, which we call pf , such that a) for p > pf , the final bootstrapped
configuration is fully occupied for almost every initial configuration, and b) if p < pf , then
for almost every initial configuration, the final bootstrapped configuration has density of
occupied vertices less than 1. In this paper, we establish the existence of a distinct critical
value for p, pc, such that 0 < pc < pf , with the following properties: 1) if p ≤ pc, then for
almost every initial configuration there is no infinite cluster of occupied vertices in the final
bootstrapped configuration; 2) if p > pc, then for almost every initial configuration there
are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover,
we show that 3) for p < pc, the distribution of the occupied cluster size in the final boot-
strapped configuration has an exponential tail; 4) at p = pc, the expected occupied cluster
size in the final bootstrapped configuration is infinite; 5) the probability of percolation of
occupied vertices in the final bootstrapped configuration is continuous on [0,pf ] and ana-
lytic on (pc,pf ), admitting an analytic continuation from the right at pc and, only in the
case θ = b, also from the left at pf .
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1 Introduction

Bootstrap percolation is a process of continued interest for physicists as well as mathemati-
cians. For a review, we refer the reader to [1]. Here we obtain new results for the process
on a homogeneous tree. We show that in addition to the well known critical point pf , above
which the tree becomes fully occupied, there is a distinct critical point pc above which occu-
pied sites percolate. We then prove several results that indicate the sharpness of the transition
to percolation, and analyticity of the percolation probability between these critical points.

This paper was motivated in part by our work on the threshold θ contact process on ho-
mogeneous trees [6]. In the latter model, sites get infected by neighboring infected sites,
provided there are at least θ of them, at rate λ, and recover unconditionally at rate 1. Boot-
strap percolation corresponds in a heuristic sense to the λ → ∞ limit of this model at time
0+, and was used there as a tool in the study of the regime of large λ. Absence of perco-
lation of 1’s in the bootstrap percolation process implies that the threshold contact process
converges to the state with all spins 0. We wonder if the presence of an intermediate phase
for the bootstrap percolation process implies the existence of an intermediate phase also for
the threshold contact process with large λ.

In regard to bootstrap percolation on the cubic lattices Z
d , d ≥ 2, one cannot hope for the

same results that we have here, with 0 < pc < pf < 1. This is so because for these models
pf = 0 or pf = 1, according to whether θ ≤ d , or θ > d , respectively, as proved in [11].
Of course, we have then 0 = pc = pf in the former case and 0 < pc < pf = 1 in the latter
case. There is nevertheless an important way in which one can describe a surrogate of a
non-trivial transition point pf for the models with pf = 0, as pointed out originally in [2],
and further studied in various papers, including [4] and [9]. For this purpose one takes a
d-dimensional box of sidelength n and scales n → ∞ at the same time as p → 0. If the
compromise between n and p is of the appropriate form (for instance n = exp(C/p) in the
case d = θ = 2), then as a parameter that mediates that relationship (the parameter C in
this d = θ = 2 case) is varied, one can either have the probability that the box becomes
fully occupied converge to 0 or to 1. The mentioned parameter undergoes therefore a non-
trivial transition. It is possible that in this way two distinct critical points may be produced,
one corresponding to full occupancy and one corresponding to an analog in finite volume
of percolation. For this purpose, consider the events Ef that the box is eventually fully
occupied, and Ep that each pair of opposite faces of the box are eventually connected by a
path of occupied sites. It is conceivable that in d ≥ 3 (but not in d = 2), the way of scaling
n with p to see a transition from P(E) ≈ 0 to P(E) ≈ 1 would depend on whether E = Ef

or E = Ep .
We turn now to the notation and definitions needed in this paper. Let Tb be the (unori-

ented) homogeneous tree with degree b + 1, where b ≥ 2, and let Vb be its vertex set. We
also consider �Tb , the oriented homogeneous tree with degree b + 1; this is the graph with
the same vertex set Vb as Tb , and oriented edges such that incident to each vertex there are b

outgoing edges and 1 incoming edge. For x ∈ Vb , let Nx be the set of nearest neighbors of x

in Tb , that is, y ∈ Vb incident to which there are edges of Tb which are incident to x as well.
We also define �Nx as the set of oriented nearest neighbors of x in �Tb , that is, the y ∈ Vb

incident to which there are outgoing edges of �Tb from x. We will fix an arbitrary vertex of
Vb as the root of Tb , and denote it R. We will use the shorthand N = NR and �N = �NR .
For x ∈ Vb we will denote by x− the unique element of Nx \ �Nx ; we will also consider the
forward trees from x, T

+,x
b and �T+,x

b , consisting respectively of the connected components
containing x of the subgraphs of Tb and �Tb obtained by removing x− along with all edges
of Tb and �Tb incident on x−; x will be called the root of the respective trees. We will write
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T
+
b = T

+,R
b and �T+

b = �T+,R
b for short. Let also V

+,x
b denote the common vertex set of T

+,x
b

and �T+,x
b , with the shorthand notation V

+
b for V

+,R
b .

Below we will consider elements of {0,1}�, with � a subset of Vb . For η a given such el-
ement, which we call configuration, and x ∈ �, we say that x is occupied (in η) if η(x) = 1;
and vacant, otherwise. We will say that a subset �′ of � is occupied (resp. vacant) if
η(x) = 1 (resp. 0) for all x ∈ �′.

We now define the bootstrap percolation model with threshold θ , an integer such that
2 ≤ θ ≤ b, and initial density p on Vb . See [3] and references therein for background on
those models. Let the initial configuration η0 ∈ {0,1}Vb be chosen according to a product of
Bernoullis with parameter p. And for n ≥ 1 and arbitrary x ∈ Vb set:

ηn(x) =

⎧
⎪⎨

⎪⎩

1, if ηn−1(x) = 1;
1, if ηn−1(x) = 0 and

∑
y∈Nx

ηn−1(x) ≥ θ;
0, if ηn−1(x) = 0 and

∑
y∈Nx

ηn−1(x) < θ.

(1.1)

We note that ηn is nondecreasing in n and thus

lim
n→∞ηn =: η∞ (1.2)

is well defined. We call η∞ final (bootstrapped) configuration. We will also call (ηn)n≥0 the
(unoriented) bootstrapping dynamics.

Similarly we consider the oriented model �η0 = η0 and �ηn defined recursively as in (1.1),
with �ηn−1 replacing ηn−1, and �Nx replacing Nx . Monotonicity also gives sense to

lim
n→∞ �ηn =: �η∞, (1.3)

the final configuration of the oriented model.
The only randomness entering these models is in the initial configuration η0. Let Pp

denote the underlying probability measure, and Ep the corresponding expectation. For n =
0,1, . . . ,∞, let us define

�pn = Ep(�ηn(R)), pn = Ep(ηn(R)). (1.4)

Due to the translation invariance of Pp and of the dynamical rules, we have that the distri-
butions of �ηn and ηn are translation invariant for every n = 0,1, . . . ,∞, so the particular
choice of root is not important in (1.4). It is well known [3] that if we set

pf = inf{p ∈ [0,1] : Pp(η∞ ≡ 1) = 1} = inf{p ∈ [0,1] : p∞ = 1} (1.5)

�pf = inf{p ∈ [0,1] : Pp(�η∞ ≡ 1) = 1} = inf{p ∈ [0,1] : �p∞ = 1} (1.6)

then

pf = �pf ∈ (0,1). (1.7)

For p ∈ [0,pf ] it is interesting to study the properties of the random configurations η∞
and �η∞. Here we will study percolation of these configurations.

Given η0 ∈ {0,1}Vb , for x ∈ Vb , let Cx (resp. �Cx ) denote the cluster of occupied vertices
of Tb (resp. �Tb) containing vertex x in the final configuration η∞ (resp. �η∞). Namely Cx

(resp. �Cx ) is the maximal set of occupied vertices y of Tb in η∞ (resp. �η∞) such that there
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is a finite path in Cx (resp. �Cx ) connecting x to y, where by a path we mean an ordered
collection {y1, y2, . . .} ⊂ Vb such that yi+1 ∈ Nyi

(resp. �Nyi
) for i ≥ 1. We will denote for

short C = CR and �C = �CR .
We say that there is percolation at x in η∞ (resp. in �η∞) if |Cx | = ∞ (resp. | �Cx | = ∞).

We define now the percolation critical points:

pc = inf{p ∈ [0,1] : Pp(|C| = ∞) > 0} (1.8)

�pc = inf{p ∈ [0,1] : Pp(| �C| = ∞) > 0}. (1.9)

We state the main result of this paper next for the unoriented model alone.

Theorem 1.1

1.

0 < pc < pf (1.10)

2. For p < pc , there exist positive finite constants c1, c2 such that for all k ≥ 0

Pp(|C| > k) ≤ c1e
−c2k. (1.11)

3. At p = pc ,

Pp(|C| > k) → 0, as k → ∞; (1.12)

Ep(|C|) = ∞. (1.13)

4. For p > pc , there exist positive finite constants c3, c4 such that for all k ≥ 0

Pp(k < |C| < ∞) ≤ c3e
−c4k. (1.14)

5. π(p) := Pp(|C| = ∞) is continuous on [0,pf ], analytic on (pc,pf ), and admits an an-
alytic continuation from the right at pc . If θ = b, then π is continuous on [0,1].

The smoothness properties of π on the left of pf depend on b and θ , as stated in the
following result.

Theorem 1.2

1. If θ = b, then π admits an analytic continuation from the left at pf .
2. If θ < b, then as p ↑ pf

d

dp
π(p) → ∞. (1.15)

It will become clear in the arguments used to prove the above results that oriented ver-
sions of them hold as well. Moreover, in contrast to (1.7),

pc < �pc.

It is interesting to note that when Pp(η∞ ≡ 1) = 0, vacant sites must percolate in η∞
(since finite clusters of vacant sites are eliminated by the dynamics). Therefore, in the inter-
mediate phase between pc and pf infinite clusters of vacant and of occupied sites coexist.
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It is interesting to observe that for some values of b and θ , the infinite clusters of occupied
sites that occur in the intermediate regime between pc and pf are not present at time 0, and
are therefore produced by the dynamics. This is the case, for instance, when θ = 2 and b is
large. We know from [3] that pf is then of order 1/b2. But the critical point for percolation
at time 0 is 1/b  1/b2. The existence of the intermediate phase then shows that sometimes
the bootstrap percolation dynamics is “strong enough to create infinite clusters”, but “not
strong enough to make all sites occupied”.

Our proof of Theorem 1.1 requires us to use several tools that are known to imply (1.7).
Because those tools are somewhat different than those found in [3] and other papers, we
review them in Sect. 2. In Sects. 3 and 4 we analyze the oriented and unoriented models,
respectively. An Appendix collects auxiliary results and supplementary proofs.

2 Full Occupancy

The results in this section are well known. We nevertheless choose to present proofs for
them since we found no clear cut reference for each of them specifically.

Proposition 2.1 �p∞ is the smallest solution in [0,1] of

x = fp(x), (2.1)

where fp(x) = p + q
∑b

k=θ

(
b

k

)
xk(1 − x)b−k , with q = 1 − p.

Remark 2.2 1 is always a solution of (2.1). One readily checks that for p close enough to 1,
this is the only solution, and for p close enough to 0, there are smaller solutions in [0,1].

Proof of Proposition 2.1 The key observation is that for every n ≥ 0, the random variables
{�ηn(x); x ∈ �N } are independent Bernoullis with common parameter �pn, and are indepen-
dent of �η0(R). From the dynamical rules, we have that, for n ≥ 1, �ηn(R) = 1 if and only if
either �η0(R) = 1 or �η0(R) = 0 and

∑
x∈ �N �ηn−1(x) ≥ θ . By the latter part of the key obser-

vation above, we conclude that

�pn = p0 + (1 − p0)Pp

(∑

x∈ �N
�ηn−1(x) ≥ θ

∣
∣
∣
∣�η0(R) = 0

)

= p + qPp

(∑

x∈ �N
�ηn−1(x) ≥ θ

)

= fp( �pn−1),

where in the latter passage, we have used the first part of the key observation above, from
which follows that

∑
x∈ �N �ηn−1(x) has a binomial distribution with b trials and probability of

success �pn−1 in each trial. From the monotonicity of �pn in n, the continuity and increasing
monotonicity of fp(x) in x and the that fact that �p∞ = limn→∞ �pn, the result follows. �

Corollary 2.3

�pf = sup{p ∈ [0,1] : (2.1) has a solution in (0,1)} (2.2)

Remark 2.4 From obvious properties of fp(x), we have that, for p̄ = �pf and p̄∞ = �p∞(p̄),
f ′

p̄(p̄∞) = 1, where f ′
p̄ is the derivative of fp̄ .
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Proposition 2.5 We have

p∞ = p + q

b+1∑

k=θ

(
b + 1

k

)

�pk
∞(1 − �p∞)b+1−k. (2.3)

Proof Let x1, . . . , xb+1 be an enumeration of NR , and consider unoriented bootstrap perco-
lation models on T

+,xi , i = 1, . . . , b + 1, (defined in the obvious way, and started from η0

restricted to the respective subgraph). Let ζ (i)
n , n = 0,1, . . . ,∞ denote the successive con-

figurations of the unoriented bootstrap percolation models on T
+,xi , i = 1, . . . , b + 1. Now,

on {η0(R) = 0} we have that η∞(R) = 1 iff
∑b+1

i=1 ζ (i)∞ (xi) ≥ θ . Since ζ (i)∞ , i = 1, . . . , b + 1,
are i.i.d., we conclude that (2.3) holds with �p∞ replaced by Ep(ζ (1)∞ ).

Consider now oriented bootstrap percolation on �T+,x1 . Notice that it is identical to ori-
ented bootstrap percolation on �Tb restricted to �T+,x1 . Let �ζ (1)

n , n = 0,1, . . . ,∞ denote the
successive configurations of the former model. We recall that ζ

(1)

0 = �ζ (1)

0 = η0 restricted to
V

+,x1
b .

To finish the proof, we claim that if �ζ (1)∞ (x1) = 0, then ζ (1)∞ (x1) = 0. We introduce a
piece of terminology before proceeding; we will say that a vertex x ∈ V

+,x1
b is protected if

�ζ (1)∞ (x) = 0. Let us also denote T1 = T
(b)

1 := T
+,x1 . To argue the claim, we start by observing

that if x1 is protected, then there must be a vacant subtree of T
(b)

1 , denoted T , with x1 as
root, which is isomorphic to T

(b−θ+1)

1 . This follows from the fact that in order that x ∈ �T1 be
protected, we must have �ζ (1)

0 (x) = 0 and at least b − θ + 1 protected vertices in �Nx ; for each
such x, let Px be a(n arbitrary) choice of exactly b − θ + 1 such protected vertices. Then
making T0 = {x1} and, for n ≥ 1, Tn = ⋃

x∈Tn−1
Px , we will have that

⋃
n Tn may be taken

as T . Now T is invariant under the unoriented threshold θ bootstrap percolation dynamics
on T1, since every vertex in it is vacant and has fewer than θ occupied nearest neighbor
vertices in T1. Thus ζ (1)∞ (x1) = 0. �

It follows from Proposition 2.5 that the critical parameters in (1.5–1.6) are actually equal.

Corollary 2.6

�pf = pf (2.4)

Proof It is clear from (2.3) that p∞ = 1 iff �p∞ = 1. �

Remark 2.7 An obvious corollary of the above, namely that pf equals the right hand side
of (2.2), is the main statement of Proposition 1.2 of [3].

Remark 2.8 One readily checks from the above that 0 < pf < 1. For p < 1, the function
fp(x) is strictly increasing and analytic; thus for p < pf its derivative at �p∞ is strictly less
than 1. It follows that the derivative at �p∞ of fp(x) − x is nonzero. We can then invoke the
Analytic Implicit Function Theorem to conclude that �p∞ = �p∞(p) and p∞ = p∞(p) are
analytic in [0,pf ). From the obvious increasing monotonicity of �p∞ and p∞ we conclude
that they are both strictly increasing in [0,pf ].

pf can be readily explicitly computed in cases θ = 2 and b; in the latter case, pf =
1 − 1/b. See Proposition 1.2 of [3]. It can also be readily checked that �p∞ and p∞ are
continuous at pf for θ = b and discontinuous (but left continuous) at pf for θ < b.
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3 The Oriented Case

We will describe �C, the occupied cluster of the root in �η∞, as cluster of clusters of branching
processes, which we now discuss.

We start by classifying an initially vacant vertex as weakly vacant, if it is eventually
occupied by the (oriented) dynamics, and strongly vacant, if it is never occupied by that
dynamics. That is, x ∈ Vb such that �η0(x) = η0(x) = 0 is weakly vacant if �η∞(x) = 1, and
strongly vacant if �η∞(x) = 0. We will consider configurations of occupied, weakly vacant
and strongly vacant vertices, ξ ∈ {1,0,0}Vb as follows. For x ∈ Vb , set

ξ(x) =

⎧
⎪⎨

⎪⎩

1, if �η0(x) = 1,

0, if �η0(x) = 0 but �η∞(x) = 1,

0, if �η∞(x) = 0.

(3.1)

We will consider next the cluster Wx of weakly vacant vertices, or 0-vertices, containing
a given vertex x. That is,

Wx = {y ∈ Vb : there exist x = x0, x1, . . . , xn = y with xi ∈ �Nxi−1 ,

i = 1, . . . n, and ξ(xi) = 0, i = 0, . . . n}.
Wx will be empty, if ξ(x) �= 0. Otherwise, it is a cluster of a branching process. To argue
that, we start by letting, for given x ∈ Vb , Ox , Wx , Sx denote respectively the numbers
of initially 1-, 0-, and 0-neighbors of x; that is,

(Ox,Wx,Sx) =
( ∑

y∈ �Nx

1{ξ(y) = 1},
∑

y∈ �Nx

1{ξ(y) = 0},
∑

y∈ �Nx

1{ξ(y) = 0}
)

. (3.2)

Remark 3.1 The independence of {ξ(y), y ∈ �Nx} implies that (Ox,Wx,Sx) is trinomial with
parameters b (number of trials) and p, �r∞, �q∞ (probabilities of resp. 1,0,0), where �r∞ =
�p∞ −p and �q∞ = 1 − �p∞. Also, ξ(x) = 0 if and only if �η0(x) = 0 and Sx ≤ b − θ ; thus, the
conditional distribution of Wx given ξ(x) = 0 is the same as that of Wx given Sx ≤ b−θ . We
conclude that Wx either is empty, with probability 1 − �r∞, or, with probability �r∞, it is the
cluster of a branching process initiated with one individual and with offspring distribution
given by the conditional distribution of Wx given Sx ≤ b − θ .

We now introduce the local cluster Lx of occupied vertices of �η∞ containing x, and its
boundary Ox of initially occupied vertices.

If ξ(x) = 0, let

Lx = Ox = ∅. (3.3)

If ξ(x) = 1, let

Lx = Ox = {x}. (3.4)

If ξ(x) = 0, let

Lx = Wx ∪Ox, with Ox = {y ∈ ∂̄Wx : ξ(y) = 1}, (3.5)

where, given a nonempty subset � of Vb , ∂̄� = {y /∈ � : y ∈ �Nz for some z ∈ �} is the
oriented outer boundary of �.
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Remark 3.2 �Cx can be obtained from local clusters and their 1-boundaries by the following
iteration. Let C0 = Lx , O0 = Ox , and for n ≥ 0 make

Cn+1 =
⋃

y∈On

⋃

z∈ �Ny

Lz; On+1 =
⋃

y∈On

⋃

z∈ �Ny

Oz. (3.6)

Then

�Cx =
⋃

n≥0

Cn. (3.7)

We now notice that, for every n ≥ 0, with On �= ∅, the portion of the ξ -configuration forward
from On is independent from that restricted to

⋃n

i=0 Ci . From this and the above construc-
tion, it follows that O := (On)n≥0 are the successive generations of a branching process with
initial distribution given by a copy of |O|, and offspring distribution given by the sum of b

i.i.d. copies of |O|, independent of the initial distribution, where O = OR , and that almost
surely | �C| = ∞ if and only if that branching process survives.

The following sequence of lemmas and propositions exploits Remark 3.2.

Lemma 3.3 Let ν = ν(p) = Ep(|O|) and

M = M(p) = q

b∑

k=θ

k

(
b

k

)

�pk−1
∞ �qb−k

∞ . (3.8)

Then either M < 1 and ν = p

1−M
or else ν = ∞.

Remark 3.4 M(0) = 0 and by Remark 2.8, we have that M is analytic in [0,pf ) and left
continuous at pf .

Lemma 3.5 Set p̃ = inf{p ∈ [0,pf ] : M(p) = 1}. Then

p̃

{
< pf , if 2 ≤ θ < b,

= pf , if 2 ≤ θ = b.
(3.9)

Remark 3.6 We will see below that M(p) = 1 has at least 1 solution in [0,pf ]. By the
continuity of M we then have that p̃ is the smallest such solution.

Remark 3.7 By the above results and standard facts about analytic function theory, we have
that, on [0, p̃), ν = p

1−M
is analytic. Note also that ν(0) = 0 and ν(p) → ∞ as p ↑ p̃.

Lemma 3.8 For p ∈ [0, p̃) there exist positive finite constants c1, c2 such that for all k ≥ 0

Pp(|L| > k) ≤ c1e
−c2k, (3.10)

where L = LR .

Warning: The constants c1, c2 in the above lemma are not necessarily the same as those
in the second part of Theorem 1.1. Throughout, constants denoted ci , i ≥ 0, may be different
in different appearances.



Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions 847

Proposition 3.9 We have

�pc = inf{p ∈ [0,pf ] : ν(p) = 1/b} ∈ (0, p̃). (3.11)

For p < �pc there exist positive finite constants c1, c2 such that for all k ≥ 0

Pp(| �C| > k) ≤ c1e
−c2k. (3.12)

And P �pc (| �C| = ∞) = 0, E �pc (| �C|) = ∞.

Proof of Lemma 3.3 Suppose that ν < ∞. Now consider the events

A =
{∑

x∈ �N
1{ξ(x) = 1 or 0} ≥ θ

}

(3.13)

and, for k ≤ b and a given selection of k vertices x1, . . . xk of �N ,

Ak = {
ξ(xi) = 1 or 0 for i = 1, . . . , k

}
. (3.14)

Then

ν = Ep(|O|) = p + qEp

(∑

x∈ �N
|Ox |;A

)

= p + q

b∑

k=θ

(
b

k

)

Ep

(|Ox1 | + · · · + |Oxk
|;Ak

)

= p + q

b∑

k=θ

k

(
b

k

)

Ep

(|Ox1 |;Ak

)

= p + q

b∑

k=θ

k

(
b

k

)

Ep

(|Ox1 |; ξ(x1) = 1 or 0
)
Pp(ξ(x2) = 1 or 0)

×· · ·Pp(ξ(xk) = 1 or 0)Pp(ξ(xk+1) = 0) · · ·Pp(ξ(xb) = 0)

= p + q

b∑

k=θ

k

(
b

k

)

ν �pk−1
∞ �qb−k

∞ = p + νM,

where {xk+1, . . . , xb} = �N \ {x1, . . . , xk}. The result follows. �

Proof of Lemma 3.5 When 2 ≤ θ = b, we have by Remark 2.4 and (2.4) that at p = p̄ = pf ,

1 = f ′
p(p̄∞) = qbp̄b−1

∞ = M(p).

Suppose now that p < pf = 1 − 1/b (see Remark 2.8) and M(p) = qb �pb−1∞ = 1. It follows
that �p∞ = (qb)−1/(b−1). Now �p∞ also satisfies (2.1), which in this case, since from the strict
increasing monotonicity of �p∞ in [0,pf ] (see Remark 2.8) we have �p∞(p) < �p∞(pf ) = 1,
is equivalent to x + x2 + · · · + xb−1 = p/q . Thus

p

q
= �p∞ + · · · + �pb−1

∞ = (qb)− 1
b−1 + · · · + (qb)−1 ≥ b − 1

qb
,
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since bq ≥ 1. It follows that p ≥ 1 − 1/b, in contradiction with the hypothesis; we conclude
that p̃ = pf .

When 2 ≤ θ < b, at p = p̄ = pf , again by Remark 2.4 and (2.4) we have that

1 = f ′
p(p̄∞)

= q
d

dx

{
b∑

k=θ

(
b

k

)

xk(1 − x)b−k

}

x=p̄∞

= q

b∑

k=θ

k

(
b

k

)

p̄k−1
∞ q̄b−k

∞ − q

b−1∑

k=θ

(b − k)

(
b

k

)

p̄k
∞q̄b−k−1

∞

= M(p) − q

b−1∑

k=θ

(b − k)

(
b

k

)

p̄k
∞q̄b−k−1

∞

< M(p),

since q
∑b−1

k=θ (b − k)
(
b

k

)
p̄k∞q̄b−k−1∞ > 0 in this case. So M(p) > 1, and since M(0) = 0 and

M is continuous, it follows that p̃ < p = pf . �

Proof of Lemma 3.8 We claim that M is the offspring mean of the branching process in-
volved in W := WR (see Remark 3.1). Indeed, that mean equals

Ep(W |S ≤ b − θ)

= 1

Pp(S ≤ b − θ)

b−θ∑

s=0

b−s∑

w=0

wPp(W = w,S = s)

= 1

Pp(S ≤ b − θ)

b−θ∑

s=0

b−s∑

w=1

w
b!

w!s!(b − w − s)! �r
w
∞ �qs

∞pb−w−s

= b�r∞
Pp(S ≤ b − θ)

b−θ∑

s=0

b−s∑

w=1

(b − 1)!
(w − 1)!s!(b − w − s)! �r

w−1
∞ �qs

∞pb−w−s

= b�r∞
Pp(S ≤ b − θ)

b−θ∑

s=0

(
b − 1

s

)

�pb−1−s
∞ �qs

∞

= �r∞M(p)

qPp(S ≤ b − θ)
= Pp(ξ(R) = 0)

qPp(S ≤ b − θ)
M(p) = M(p),

where S = SR and W = WR , and the claim is justified.
Thus for p < p̃, W is subcritical, and since its offspring distribution is bounded, Propo-

sition A.1 applies and we get the exponential decay of the distribution of |W|. The result
now follows from (3.5) and the obvious bound |O| ≤ b|W| + 1. �

Proof of Proposition 3.9 First note that from Remark 3.2,

bν(p) > 1 ⇔ Pp(| �C| = ∞) > 0. (3.15)
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Also, by the exponential decay of |O| at p < p̃ (which follows by (3.3–3.5) and Lemma 3.8),
we may invoke Theorem I.13.1 in [8] to get that

bν(p) = 1 ⇒ Ep(| �C|) = ∞. (3.16)

We also have

bν(p) = 1 ⇒ Pp(| �C| = ∞) = 0. (3.17)

In contrast to (3.2–3.16), we claim that the same Remark 3.2 and Lemma 3.8 yield

bν(p) < 1, p < p̃ ⇒ Pp(| �C| > k) ≤ c1e
−c2k, c1, c2 ∈ (0,∞). (3.18)

Indeed, the exponential decay of the offspring distribution of the O-branching process fol-
lows from (3.10); since it is subcritical, Remark A.3 applies and we get the exponential
decay of the distribution of Z, the total size of its family. Now we get from Lemma A.4 that
| �C| ≤ 2Z (see also Remark A.5). Equation (3.12) follows.

Set now

p′ = inf{p ∈ [0,pf ] : bν(p) = 1}.
From Lemma 3.5 and Remark 3.7, we learn that 0 < p′ < p̃ ≤ pf , bν(p′) = 1 and that

there are values of p > p′, arbitrarily close to p′ such that bν(p) �= 1. Therefore, from (3.16),
we learn that Ep′(| �C|) = ∞, and by monotonicity in p, also Ep(| �C|) = ∞ for p ≥ p′.
From (3.18), we now know that bν(p) ≥ 1 for p > p′. Hence, there are values of p > p′
arbitrarily close to p′ such that bν(p) > 1. From (3.15), we have then �pc ≤ p′. Using (3.18)
again, we see that �pc ≥ p′, completing the proof. �

4 The Unoriented Case

We introduce now two modified oriented systems, out of which C will be constructed. For
that we will consider another family of oriented trees. Say that a vertex x points to R in �Tb

if there is an oriented path in �Tb starting at x and ending at R. And say that an edge points
to R in case it starts at a vertex that points to R. Let �T∗

b be obtained from �Tb by reversing
the orientation of the edges pointing to R. Let �N ∗

x be the set of oriented nearest neighbors
of x in �T∗

b , with the shorthand �N ∗ = �N ∗
R . Then | �N ∗| = b + 1 and | �N ∗

x | = b for x ∈ Vb \ {R}.
For x �= R, let x∗,− be the unique element of Nx \ �N ∗

x , and let �T∗,+,x
b be the graph consisting

of the connected component containing x of the subgraph of �T∗
b obtained by removing x∗,−

along with all edges of �T∗
b incident on x∗,−. Let V

∗,+,x
b denote the vertex set of �T∗,+,x

b .
Let now (η∗

n, n ≥ 0) denote the oriented bootstrap dynamics in �T∗
b and let C∗ denote

the cluster of occupied vertices of η∗∞ containing R. Secondly, for x �= R, let (η+,x
n , n ≥

0) denote the oriented bootstrap dynamics in �T∗,+,x
b with the following perturbation: the

threshold at x is θ −1 instead of θ , which remains the threshold of all the remainder vertices
of �T∗,+,x

b ; η
+,x
0 is the restriction of η0 to the vertex set of �T∗,+,x

b . For y ∈ V
∗,+,x
b , let C+,x

y

denote the cluster of occupied vertices of η+,x∞ containing y, with C+
x := C+,x

x and C+ = C+
x0

,

with x0 a fixed element of �NR . By the spatial homogeneity of the initial condition and
dynamical rules, the distribution of |C+

x | is independent of x �= R.
When p ∈ [0, �pc], it readily follows from Proposition 3.9 that, when p < �pc , C∗ and

C+ are finite almost surely and that the distributions of |C∗| and |C+| have exponentially
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decaying tails. Let now X := |∂̄C+| and X̃ := |∂̃C∗|, where ∂̃C∗ = {y /∈ C∗ : y ∈ �N ∗
z for some

z ∈ C∗} (with the convention that ∂̃∅ = ∅) and make

σ = σ(p) := Ep(X|ξ(x0) = 0). (4.1)

We also define

ρ = ρ(p) := Ep(|∂̄ �C|). (4.2)

Lemma 4.1 For 0 ≤ p ≤ �pc , we have

σ =
(

b

θ − 1

)

q �qb−θ
∞ �pθ−2

∞ {(b − θ + 1) �p∞ + (θ − 1)ρ}. (4.3)

σ is analytic on [0, �pc) and

σ(p) →
{

∞ as p ↑ �pc,

0 as p ↓ 0.
(4.4)

We now construct C as cluster of clusters of branching processes, much as in Sect. 3. We
do that iteratively, as follows. Let Ĉ0 = C∗, S0 = ∂̄C∗, and for n ≥ 0 make

Ĉn+1 =
⋃

y∈Sn

C+
y , Sn+1 = ∂̄Ĉn+1 =

⋃

y∈Sn

∂̄C+
y ; Ĉ =

⋃

n≥0

Ĉn. (4.5)

When p ≤ �pc , almost surely at each step we have the addition of a finite set (which may
be empty at a given step; in this case all the subsequent additions are empty, so one may
understand that the iteration stops).

Lemma 4.2 When p ≤ �pc , (Sn)n≥0 are the successive generations of a branching process
with initial distribution given by the distribution of X̃, and offspring distribution given by
the conditional distribution of X given ξ(x0) = 0.

One may readily check that, almost surely, S survives iff |Ĉ| = ∞.

Lemma 4.3

C = Ĉ (4.6)

We now state the main results of this section, from which Theorem 1.1 follows.

Proposition 4.4 We have

1.

pc = inf{p ∈ [0,pf ] : σ(p) = 1} ∈ (0, �pc); (4.7)

2. for p < pc there exist positive finite constants c1, c2 such that for all k ≥ 0

Pp(|C| > k) ≤ c1e
−c2k; (4.8)

3. at p = pc , Pp(|C| > k) → 0 as k → ∞ and Ep(|C|) = ∞;
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4. for p > pc there exist positive finite constants c′
1, c

′
2 such that for all k ≥ 0

Pp(k < |C| < ∞) ≤ c′
1e

−c′
2k. (4.9)

Proposition 4.5

1. π is analytic on (pc,pf ) and left continuous at pf .
2. π admits an analytic continuation from the right on pc .

Remark 4.6 Theorem 1.1 follows from Lemma 3.5 and Propositions 3.9, 4.4 and 4.5.

We next present proofs to the above statements. Theorem 1.2 and Proposition 4.5 will be
proved in the Appendix.

Proof of Lemma 4.1 Consider the events

A =
⎧
⎨

⎩

∑

x∈ �Nx0

1{ξ(x) = 0 or 1} = θ − 1

⎫
⎬

⎭
,

B =
⎧
⎨

⎩

∑

x∈ �Nx0

1{ξ(x) = 0 or 1} ≤ θ − 1

⎫
⎬

⎭
,

Ã =
{

θ−1∑

i=1

1{ξ(xi) = 0 or 1} = θ − 1

}

∩
{

b∑

i=θ

1{ξ(xi) = 0 or 1} = 0

}

,

where {x1, . . . , xb} is an arbitrary deterministic ordering of �Nx0 .
Note that {ξ(x0) = 0} = {η0(x0) = 0} ∩ B . Thus, since X = 0 in {ξ(x0) = 0,Ac} and

A ⊂ B ,

�q∞σ = Ep(X, ξ(x0) = 0) = Ep(X, ξ(x0) = 0,A)

= Ep(X,η0(x0) = 0,A) =
(

b

θ − 1

)

Ep(X,η0(x0) = 0, Ã)

=
(

b

θ − 1

)
{
(θ − 1)Ep(|∂̄ �Cx1 |, η0(x0) = 0, Ã)

+ (b − θ + 1)Pp(η0(x0) = 0, Ã)
}

=
(

b

θ − 1

)
{
(θ − 1)q �pθ−2

∞ �qb−θ+1
∞ ρ + (b − θ + 1)q �pθ−1

∞ �qb−θ+1
∞

}

=
(

b

θ − 1

)

q �pθ−2
∞ �qb−θ+1

∞ {(θ − 1)ρ + (b − θ + 1) �p∞} , (4.10)

and (4.3) is verified.
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The analyticity of σ follows from that of ρ, which in turn is the object of Lemma A.6 in
the Appendix.

To establish (4.4) we recall that �p∞ vanishes as p → 0 (see Proposition 2.1 and Re-
mark 2.8), and so does ρ, by Lemma A.6 and the fact that ρ(0) = 0. This settles the second
assertion of (4.4). The divergence as p → �pc follows from the same behavior of ρ, and this
is implied again by Lemma A.6 and the fact that ρ( �pc) = ∞; this in turn may be seen to
follow from E �pc (| �C|) = ∞ and the inequality |∂̄ �C| ≥ 1

2 | �C|, which in turn may be seen to
follow from (A.7), if we observe that, in the context of Lemma A.4, |∂̄C| ≥ |∂∗C|. (That
E �pc (| �C|) = ∞ follows from the divergence of the expected number of generations of the O-
branching process at criticality; to see that, we may apply (I.10.8) of [8]; to check that the
condition for the validity of that formula is satisfied, note that the offspring distribution of
the O-branching process has an exponentially decaying tail: this follows from Lemma 3.8.
See Remark 3.2.) �

Proof of Lemma 4.2 That S0 conforms to the statement is clear. Given that the statement
holds for S0, . . . , Sn, n ≥ 0, we note that Sn+1 depends only on η0 restricted to Sn and on
⋃

y∈Sn
V

∗,+,y

b , which is a disjoint union. Since ξ ≡ 0 on Sn, the result follows. �

Proof of Lemma 4.3 That Ĉ0 = C∗ ⊂ C is clear: if Ĉ0 is nonempty, it is also internally
spanned (that is, the (unoriented) bootstrapping dynamics restricted to Ĉ0 eventually fully
occupies it). Assuming that

⋃n

i=0 Ĉi ⊂ C, n ≥ 0, we conclude that Ĉn+1, if nonempty, be-
comes eventually fully occupied under the bootstrapping dynamics restricted to

⋃n+1
i=0 Ĉi .

Since the latter set is connected and contains R, we conclude that it belongs to C. Since n is
arbitrary, we conclude that Ĉ ⊂ C.

To argue the converse inclusion, we consider the following further classification of ver-
tices of V

∗
b \ {R}. For x �= R, set

ξ ∗(x) =

⎧
⎪⎨

⎪⎩

1, if η∗
0(x) = 1,

0∗, if η∗
0(x) = 0 but η∗∞(x) = 1,

0
∗
, if η∗∞(x) = 0,

(4.11)

and, making κx = ∑
y∈ �N ∗

x
1{ξ ∗(y) = 1 or 0∗}, set

ξ̃ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ ∗(x), if ξ ∗(x) = 1 or 0∗,

0, if ξ(x) = 0
∗

and κ(x) = θ − 1,

0, if ξ(x) = 0
∗

and κ(x) < θ − 1.

(4.12)

We then have that

η∞(x) = 0 if ξ̃ (x) = 0 (4.13)

and for x �= R

η∞(x) = 1 if ξ̃ (x) = 0 and η∞(x∗,−) = 1. (4.14)

Consider now a vertex x of C �= ∅ and the self avoiding path R = x0, x1, . . . , xn = x

connecting it to R (with xi ∈ �N ∗
xi−1

for i = 1, . . . , n).

We claim that xi ∈ Ĉ for i = 0,1, . . . , n. To argue that, we use induction on i. An
argument like the one in the last paragraph of the proof of Proposition 2.5 shows that



Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions 853

η∞(R) = η∗∞(R), and the claim follows for i = 0. Suppose that it is not true for some

0 < i ≤ n, and let i0 = min{i = 1, . . . , n : xi �∈ Ĉ}. Then we must have ξ̃ (xi0) = 0 (other-
wise, xi0 ∈ Ĉ, since, by the definition of i0, x

∗,−
i0

∈ Ĉ, and thus η∞(x
∗,−
i0

) = 1, and since

we have (4.14)); but this contradicts (4.13). The claim is thus established, so x ∈ Ĉ, and
C ⊂ Ĉ. �

Proof of Proposition 4.4 Statements 1 to 3 are proved analogously as the corresponding
results for �C in Proposition 3.9. We may follow the proof of that result, replacing bν by
σ , �C by C, Remark 3.2 by the above construction of C as a cluster of clusters of branching
processes, O0 by X̃, and the exponential decay of the distribution of O by those of the ones
of X and X̃.

We argue statement 4. In case Pp(η∞ ≡ 1) = 1, the claim is obvious, and so we will sup-
pose that this is not the case. By the now familiar inequalities relating volume and perimeter
of connected finite sets, we can replace C by Z the total family size of the S branching
process. Therefore, it is enough to argue that

Pp(k < Z < ∞) ≤ c′′
1e

−c′′
2k, (4.15)

for some positive finite c′′
1 , c

′′
2 .

In order to prove (4.15), we first observe from the proof of statements 1 to 3 above, we
know that when pc < p ≤ �pc , (|Sn|)n≥0 is a supercritical branching process started from X̃.
Therefore, we can write

|Sn| = V (1)
n + · · · + V (X̃)

n , (4.16)

where V (1)
n ,V (2)

n , . . . are i.i.d. copies of a branching process (Vn)n≥0 starting from 1. The
latter process has extinction probability

γ = γ (p) < 1. (4.17)

When p > �pc , Sn+1 is still well defined by (4.5), provide |Sn| < ∞, but |Sn| may take the
value ∞ for some n. By assuming that ∞ is a trap for (|Sn|)n≥0, we observe that (|Sn|)n≥0 is
also a branching process started from X̃ in this case, and (4.16) and (4.17) hold on {X̃ < ∞}.
It is clear that since we are supposing Pp(η∞ ≡ 1) = 0, then also γ ≥ Pp(V1 = 0) > 0.

Let

ϕp(s) =
∞∑

k=0

Pp(|Sn+1| = k||Sn| = 1)sk, s ≥ 0

(which is independent of n ≥ 0) be the probability generating function (pgf) of the offspring
distribution of (|Sn|)n≥0 and (Vn)n≥0. Obviously

ϕp(s) < 1 for 0 ≤ s < 1 (4.18)

(this is true even at s = 1 when |Sn| assumes the value ∞ with positive probability).
Now the event {∑∞

n=0 Sn = Z < ∞} is precisely the event that (|Sn|)n≥0 becomes ex-
tinct. Conditioning on {Z < ∞} therefore transforms (|Sn|)n≥0 into a subcritical branching
process. This fact is proved as Theorem 2.1.8 in [5], where the pgf of the corresponding
offspring distribution is found to be

ϕ̄p(s) =
∞∑

k=0

Pp(|Sn+1| = k||Sn| = 1,Z < ∞)sk = ϕp(sγ )

γ
, s ≥ 0

(indep. of n ≥ 0).
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From (4.17) and (4.18), we conclude that

ϕ̄p(u) < ∞ for some u > 1.

The claim (4.15) now follows from Remark A.3 in the Appendix, since also

Pp(X̃ = k|Z < ∞) = Pp(X̃ = k)γ k

Pp(Z < ∞)
,

implying that the tail of the conditional distribution of X̃ given Z < ∞ decays exponen-
tially. �

Remark 4.7 Note that for x �= R, we have that ξ̃ (x) = 0 iff η0(x) = 0 and
∑

y∈ �N ∗
x

1{ξ ∗(y) =
0

∗} ≥ b − θ + 2. Letting q̃∞ = Pp(ξ̃ (x) = 0), x �= R, we then have by the independence of
the above random variables

q̃∞ = q

b∑

i=b−θ+2

(
b

i

)

�qi
∞(1 − �q∞)b−i . (4.19)

In particular, q̃∞ is continuous on [0,pf ] and analytic in [0,pf ) as a function of p, and it is
continuous at pf .

Appendix

Proposition A.1 Suppose that a subcritical branching process starting with a single indi-
vidual is such that its offspring distribution has an exponentially decaying tail. Then the
distribution of the total size of the family also has an exponentially decaying tail.

Remark A.2 A detailed result concerning the distribution of the total size of the family,
from which the above result could perhaps follow, is derived in [10] (see also Theorem
I.13.1 in [8]). We could not verify a condition therein for the present case, and were thus
prompted to write the proof below.

Proof of Proposition A.1 Let (Zn)n≥0 be the sizes of the successive generations of the
branching process (Z0 = 1), and let Fn denote the probability generating function (pgf )
of Z0 + · · · + Zn; and F , that of Z0 + Z1 + · · · . We will show that for some s > 1

F(s) < ∞. (A.1)

Let ϕ be the pgf of the offspring distribution. It is known ([8], Sect. I.13.2) that for n ≥ 1
and s ≥ 0

Fn(s) = sϕ (Fn−1(s)) . (A.2)

From the hypotheses it follows that ϕ(s) < ∞ for some s > 1 and ϕ′(1) < 1, where ϕ′ is
the derivative of ϕ. It follows that there exist 1 < s1 < s0 such that

s0ϕ
′(s0) =: α < 1 and s1 {1 + [ϕ(s1) − 1]/(1 − α)} ≤ s0 (A.3)



Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions 855

We will argue by induction that for all n ≥ 0

Fn(s1) ≤ s0. (A.4)

This is obvious for n = 0. Suppose it holds for n ≤ k. Then, applying (A.2),

Fn+1(s1) − Fn(s1) = s1

[
ϕ(Fn(s1)) − ϕ(Fn−1(s1))

]

≤ s1ϕ
′(Fn(s1))

[
Fn(s1) − Fn−1(s1)

]

≤ [s1ϕ
′(Fn(s1))]n [F1(s1) − F0(s1)]

= [s1ϕ
′(Fn(s1))]ns1[ϕ(s1) − 1] ≤ αns1[ϕ(s1) − 1], (A.5)

where in the first two inequalities we have used the monotonicity of ϕ′ and F·(s1); and in
the last inequality, the induction hypothesis. Now, summing up (A.5) in {0, . . . , k}:

Fk+1(s1) ≤ F0(s1) + s1[ϕ(s1) − 1]/(1 − α) = s1 {1 + [ϕ(s1) − 1]/(1 − α)} ≤ s0

by (A.3). Equation (A.1) with s = s1 follows by taking the limit as n → ∞ in (A.4). �

Remark A.3 Proposition A.1 extends to the case where the initial distribution has an expo-
nentially decaying tail. Indeed, letting ψ be the pgf of the initial distribution and F the pgf
of the family size, then F = ψ ◦ F , where F is the pgf for the family size starting with
a single individual. Supposing ψ and F are finite at some s0 > 1, then by the continuity
of F in (0, s0], and the fact F(1) = 1, we can find s1 > 1 such that F(s1) ≤ s0, and thus
F(s1) = ψ ◦ F(s1) < ∞.

Lemma A.4 For 2 ≤ θ ≤ b and C a finite nonempty connected subset of T
+
b containing R,

let

∂∗C = {x ∈ C : | �Nx \ C| > b − θ}. (A.6)

Then

|∂∗C| ≥ |C|
2

. (A.7)

Remark A.5 It follows from the definitions of W and O and the bootstrapping dynamics
that for every vertex of ∂∗W , there is a distinct vertex in O. It follows from Lemma A.4 that
|W| ≤ 2|O| and | �C| ≤ 2Z (see proof of Proposition 3.9).

Proof of Lemma A.4 By induction on n = |C|. It is true for n = 1 and 2 since in these cases
∂∗C = C (since θ ≥ 2). If |C| = n + 1 ≥ 3, then consider

M = {x ∈ ∂∗C : x is at maximal distance from the root}
and choose x ∈ M and consider x−.

If x− ∈ ∂∗C, then x− ∈ ∂∗ (C \ {x}), and

|∂∗C| = |∂∗ (C \ {x}) | + 1 ≥ n

2
+ 1 ≥ n + 1

2
. (A.8)

If x− /∈ ∂∗C and x− /∈ ∂∗ (C \ {x}), then (A.8) holds again.
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If x− /∈ ∂∗C and x− ∈ ∂∗ (C \ {x}), then (since θ ≥ 2) there exists y ∈ �Nx− ∩M, y �= x,
and so x− ∈ ∂∗ (C \ {x, y}). Then

|∂∗C| = |∂∗ (C \ {x, z}) | + 1 ≥ n − 1

2
+ 1 ≥ n + 1

2
. (A.9)

�

Lemma A.6 ρ is analytic on [0, �pc).

Proof We follow a standard approach (see Proof of Theorem 5.108 in [7]). Let �C(0) and �C(1)

denote the vertices of �C which are initially 0 and 1, respectively. We write for 1 ≤ n < ∞

Pp(|∂̄ �C| = n) =
∑

m,�

Pp(| �C(0)| = m, | �C(1)| = �, |∂̄ �C| = n) =
∑

m,�

anm�p
�qm �qn

∞, (A.10)

where anm� is the number of tree animals with m + � vertices and n boundary vertices, and
orientedly spanning configurations with m 0’s and � 1’s in them (where by a orientedly
spanning configuration of 0’s and 1’s in a tree animal, we mean a configuration for which
that animal is internally spanned by the oriented bootstrapping dynamics). From the fact
that | �C(0)| + | �C(1)| = | �C|, and the bounds 1

2 | �C| ≤ |∂̄ �C| ≤ b| �C|, the right hand side of (A.10) is

bounded below by r2n
∑

m,� anm�, where r = p ∧ q ∧ √�q∞, and since the left hand side of
that equation is a probability, and the latter sum is independent of p, we get

∑

m,�

anm� ≤ λn, (A.11)

with λ = inf0<p<pf
r−2 < ∞, since �q∞ > 0 for p < pf , and pf > 0.

We now claim that in the sum on the right hand side of (A.10), if anm� > 0, then there
exists a constant c > 0 such that � ≥ cn. Indeed, let W1, . . . ,Wk be the 0-subclusters of �C,
and O1, . . . ,Ok their 1-boundaries. Then one readily checks that

| �C(0)| + | �C(1)| = | �C| ≥ 1

b
|∂̄ �C|, (A.12)

| �C(1)| ≥ |O1| + · · · + |Ok| ≥ 1

2
(|W1| + · · · + |Wk|) = 1

2
| �C(0)|, (A.13)

where the second inequality in (A.13) follows by an application of Lemma A.4, as in the
proof of Proposition 3.9. The claim follows with c = 1/3b.

It also follows from one of the above inequalities ( 1
2 | �C| ≤ |∂̄ �C|), that

m ∨ � ≤ 2n. (A.14)

Now using the fact that �q∞ is analytic in (a complex neighborhood of) [0,pf ), we write,
formally at this point, in a complex neighborhood of [0, �pc),

ρ(z) =
∑

n≥1

n
∑

m,�

anm�z
�(1 − z)m �q∞(z)n. (A.15)

I) To get analyticity of ρ at [0, �pc), it is enough to check that the series in (A.15) has a
uniformly convergent tail at a neighborhood of any point of that interval. From the above
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discussion, we have
∣
∣
∣
∣

∑

m,�

anm�z
�(1 − z)m �q∞(z)n

∣
∣
∣
∣ ≤

∑

m,�

anm�|z|cn(1 + |z|)2n2n

= |z|cn(1 + |z|)2n2n
∑

m,�

anm� ≤ (d(z))n

at a neighborhood of the origin where |�q∞(z)| ≤ 2 (which exists by continuity of ρ at the
origin, where it equals 1), and where d(z) = 2λ|z|c(1 + |z|)2 < 1. The uniform convergence
of the series tail around the origin follows, and ρ is analytic at the origin.

II) Given p ∈ (0, �pc) and δ > 0 such that |z − p| ≤ δ and |�q∞(z) − �q∞(p)| ≤ δ, we have
that

∣
∣
∣
∣

∑

m,�

anm�z
�(1 − z)m �q∞(z)n

∣
∣
∣
∣

≤
∑

m,�

anm�p
�qm �q∞(p)n

(
p + δ

p

)� (
q + δ

q

)m ( �q∞(p) + δ

�q∞(p)

)n

≤ c(p, δ)n
∑

m,�

anm�p
�qm �q∞(p)n = c(p, δ)n

Pp(|∂̄ �C| = n) ≤ d(p, δ)n,

where c(p, δ) = (
(p+δ)(q+δ)

pq
)2(

�q∞(p)+δ

�q∞(p)
) → 1 as δ → 0, and where the second inequality fol-

lows from (A.14), and thus, by the exponential decay of the tail of the distribution of |∂̄ �C|
(which follows from that of | �C| and |∂̄ �C| ≤ b| �C|), d(p, δ) can be taken strictly less than 1 by
making δ sufficiently small. The uniform convergence of the tail of the series in (A.15) on
|z − p| ≤ δ follows, and the argument is complete. �

Proof of Proposition 4.5
1. An entirely similar argument as in II) of the proof of Lemma A.6 can be made starting

from

1 − π(p) = q∞ + Pp(0 < |C| < ∞), (A.16)

where q∞ = 1 − p∞. Since p∞ is analytic in [0,pf ), it remains to consider Pp

(0 < |C| < ∞), which can be written as follows.
∑

n≥1

∑

k,�,m

Pp(|C(0)| = m, |C(1)| = �, |∂̄C| = k) =
∑

n≥1

∑

k,�,m

ãnkm�p
�qmq̃k

∞, (A.17)

where C(0) and C(1) denote the vertices of C which are initially 0 and 1, respectively;
�+m = n; ãnkm� is the number of tree animals with m+ � vertices and k boundary vertices,
and spanning configurations with m 0’s and � 1’s in them (where by a spanning configuration
of 0’s and 1’s in a tree animal, we mean a configuration for which that animal is internally
spanned by the unoriented bootstrapping dynamics); and then using the bound k ≤ bn, the
analyticity of q̃∞ and the exponential decay of Pp(|C| = n) as n → ∞ for p > pc , which
follows from (4.9).

This argument works for getting the analyticity result. It works as well for getting left
continuity at pf when θ < b, since in this case q̃∞(pf ) > 0. When θ = b, since in this case
q̃∞(pf ) = 0, one needs instead to argue like in I) of the proof of Lemma A.6. See the proof
of Theorem 1.2 below, where the discussion is done in some more detail.



858 L.R.G. Fontes, R.H. Schonmann

2. Consider the branching process starting with a single individual and with offspring
distribution given by the conditional distribution of X given that ξ(R) = 0. Its extinction
probability s = d(p) satisfies the equation

s = ϕ+(s) = Ep(sX|ξ(R) = 0) (A.18)

(see paragraph above (4.1)). Arguing as in the proof of Lemma 4.1 we get

�q∞ϕ+(s) =
(

b

θ − 1

)

Ep[sX, η0(R) = 0, Ã] + qPp(B \ A)

= q

(
b

θ − 1

)

sb−θ+1{Ep[sY ;Y ≥ 1]}θ−1 �qb−θ+1
∞ + q

θ−2∑

i=0

(
b

i

)

�pi
∞ �qb−i

∞

= q

(
b

θ − 1

)

�pθ−1
∞ �qb−θ+1

∞ sb−θ+1{Ep[sY |Y ≥ 1]}θ−1

+ q

θ−1∑

i=0

(
b

i

)

�pi
∞ �qb−i

∞ − q

(
b

θ − 1

)

�pθ−1
∞ �qb−θ+1

∞

= q

(
b

θ − 1

)

�pθ−1
∞ �qb−θ+1

∞ (sb−θ+1{Ep[sY |Y ≥ 1]}θ−1 − 1) + �q∞, (A.19)

where Y = |∂̄ �C|, and the identity �q∞ = q
∑θ−1

i=0

(
b

i

) �pi∞ �qb−i∞ used in the last equality above
follows from Proposition 2.1. After a straightforward calculation, one gets that (A.18) is
equivalent to

(1 − s)G(p) = 1 − sb−θ+1{Ep[sY |Y ≥ 1]}θ−1 = 1 − sb{Ep[sY−1|Y ≥ 1]}θ−1, (A.20)

where G(p) = 1/
(

b

θ−1

) �pθ−1∞ �qb−θ∞ . We rewrite the right hand side of (A.20) as

1 − sb + sb(1 − {Ep[sY−1|Y ≥ 1]}θ−1)

= (1 − s)

b−1∑

i=0

si + sb[1 − Ep(sY−1|Y ≥ 1)]
θ−2∑

i=0

{
Ep

(
sY−1

∣
∣Y ≥ 1

)}i
. (A.21)

Now the expression in square brackets in the right hand side of (A.21) can be expressed as

1 − s

�p∞
Ep

(
Y−2∑

i=0

si;Y ≥ 2

)

(A.22)

Substituting (A.21) and (A.22) in the right hand side of (A.20), we find that it can be reex-
pressed as 1 − s times

I (p, s) :=
b−1∑

i=0

si + sb

�p∞
Ep

(
Y−2∑

i=0

si;Y ≥ 2

)
θ−2∑

i=0

{
Ep

(
sY−1

∣
∣Y ≥ 1

)}i

=:
b−1∑

i=0

si + sb

�p∞
I1(p, s)

θ−2∑

i=0

I2(p, s)i . (A.23)
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By Lemma A.7 below, we have that I1 and I2 are analytic in (0,pc + ε) × (0,1 + ε) for
ε > 0 small enough. Then so is I .

Let now s = e(p) be the solution of I (p, s) = G(p) in a neighborhood of pc . We have
that

e(p) = d(p) for p ≥ pc, (A.24)

and thus e(pc) = 1. One also readily checks that d
ds

I (p, s) > 0 in (0, �pc) × (0,1 + ε). We
may then apply the Analytic Implicit Function Theorem to conclude that e is well defined
and analytic in a neighborhood of pc . We then have from (A.24) that e is the analytic con-
tinuation of d on pc .

We will argue now that 1 − π = h(p,d) with h analytic on (pc,1). The result then
follows, with h(p, e) as the analytic continuation of 1 − π at pc .

Indeed, 1 − π = ∑∞
n=0 dn

Pp(X̃ = n) =: h(p,d). Proceeding as in the proof of
Lemma A.6, we expand Pp(X̃ = n) = Pp(|∂̄C∗| = n) as done in (A.10):

Pp(|∂̄C∗| = n) =
∑

m,�

a∗
nm�p

�qm �qn
∞, (A.25)

so we can express h formally as a function of two complex variables as

h(z,w) =
∞∑

n=0

wn
∑

m,�

a∗
nm�z

�(1 − z)m �qn
∞(z); (A.26)

again, in order to establish the analyticity of h in (pc,1), it suffices to show that the tail of
the first sum in (A.26) converges uniformly in the product say � = B1 × B2 of two balls
in the complex plane around pc and 1 respectively, with radii say δ > 0 small to be chosen
presently. Arguing as before, we get that

∣
∣
∣
∣
∣

∞∑

n=M

wn
∑

m,�

a∗
nm�z

�(1 − z)m �qn
∞(z)

∣
∣
∣
∣
∣

≤
∞∑

n=M

cn
∑

m,�

a∗
nm�p

�
c(1 − pc)

m �qn
∞(pc)

=
∞∑

n=M

cn
Ppc (X̃ = n), (A.27)

where c = supw∈B2
|w| supz∈B1

(
|z(1−z)|

pc(1−pc)
)2 |�q∞(z)|

�q∞(pc)
. Since c can be made close to 1 by making

δ close to 0, the result follows by the exponential decay of the distribution of X̃ below �pc . �

Lemma A.7 I1 and I2 defined in (A.23) above are analytic in (0, p̄) × (0,1 + ε) for all
p̄ < �pc and ε = ε(p̄) > 0 small enough.

Proof The latter function can be expressed as

I2(p, s) = 1

�p∞

∞∑

n=1

sn
Pp(Y = n) = 1

�p∞

∞∑

n=1

sn
Pp(|∂̄ �C| = n). (A.28)
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We then replace (A.10) above and proceed similarly as in the proof of Lemma A.6, part II.
(Note that at a point of the argument, we need to take ε > 0 small enough; we again use the
exponential decay of the tail of the distribution of |∂̄ �C|, which holds below �pc .)

As for I1, we reexpress it as

I1(p, s) =
∞∑

n=0

sn

∞∑

k=n+2

Pp(|∂̄ �C| = n), (A.29)

and then again proceed as in the proof of Lemma A.6. �

Proof of Theorem 1.2
1. Recalling the discussion in the first paragraph of Lemma 3.5, in this case, for p ≤ pf ,

we have that �p∞ is the solution x(p) of x + x2 + · · · + xb−1 = p/q in (0,1). Now x(p) is
well defined and indeed analytic on (0,1) (by the Analytic Implicit Function Theorem), and
of course coincides with �p∞ on (0,pf ]. We thus have that x(p) is an analytic continuation
of �p∞ on pf , and from (2.3) and (4.19), we find analytic continuations of both q∞ and q̃∞
on pf , x̄(p) and x̃(p), respectively.

To get the result for π , we consider the function

y(p) := x̄(p) +
∑

n≥1

∑

k,�,m

ãnkm�p
�qmx̃(p)k (A.30)

(see (A.16–A.17)) and argue as in the proof of Proposition 4.5 to find that the sum on the
right hand side above is uniformly convergent on a complex neighborhood of pf . For that we
use the fact that x̃ is continuous on a complex neighborhood of pf and x̃(pf ) = 0 to get that
given δ > 0, we find a complex neighborhood of pf such that x̃ ≤ δ in that neighborhood.
We also have as in (A.11) that

∑
k,�,m ãnkm� ≤ λ̃n for a suitable finite λ̃. We conclude that y

is analytic on pf , and it is thus an analytic continuation of 1 − π in that point.
2. We start by establishing (1.15) for π replaced by �p∞: we claim

p′
∞(p) = d

dp
�p∞(p) → ∞ as p ↑ pf . (A.31)

Indeed from Proposition 2.1 and the Implicit Function Theorem, we have that

p′
∞(p) =

d
dp

fp(x)

1 − f ′
p(x)

∣
∣
∣
∣
∣
x= �p∞

= 1 − ∑b

k=θ

(
b

k

) �pk∞(1 − �p∞)b−k

1 − f ′
p( �p∞)

. (A.32)

Since �p∞(pf ) < 1, we have that the numerator of (A.32) is bounded away from zero as
p ↑ pf . On the other hand, the denominator vanishes as p ↑ pf (see Remark 2.4). Equa-
tion (A.31) follows.

Now by (A.17) and statement 5 of Theorem 1.1, we have for pc < p < pf

π ′(p) = p′
∞(p) − q̃ ′

∞(p)
∑

n≥1

∑

k,�,m

kãnkm�p
�qmq̃k−1

∞ (p)

+
∑

n≥1

∑

k,�,m

ãnkm�(p
�qm)′q̃k

∞(p). (A.33)

We have that p∞ is increasing and analytic, so p′∞ ≥ 0. By (4.19) and (A.31), one readily
gets that q̃ ′∞(p) → −∞ as p ↑ pf . It is easy to see that the factor of q̃ ′∞(p) in (A.33) is
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bounded away from zero in a left neighborhood of pf . So, to get the result, it is enough to
show that the latter summand in (A.33) is bounded in a left neighborhood of pf . To argue
that, we take pf − ε < p < pf , where ε > 0 will be chosen small enough later on, and
bound the absolute value of that term by

c
∑

n≥1

n
∑

k,�,m

ãnkm�p
�qmq̃k

∞(p), (A.34)

where c is the constant obtained by bounding above � and m in the above sum in terms of
n, as usual, times p−1 + q−1. The above sum can now be bounded above by

∑

n≥1

nδn
∑

k,�,m

ãnkm�p
�
f (1 − pf )mq̃k

∞(pf ) = Epf
(|C|δ|C|; |C| < ∞), (A.35)

where δ = (suppf −ε<p<pf

(1−pf )q̃∞(pf )

(1−p)q̃∞(p)
)d , and d is the constant obtained by bounding above

m and k in the above sum in terms of n, as usual. It is now clear by the continuity of q̃∞
that δ can be made arbitrarily close to 1 by taking ε small enough. The result follows from
statement 4 of Theorem 1.1. �
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